您当前浏览器版本过低,请使用IE 10、Firefox 30.0或Chrome 24.0 以上浏览器访问此网站。 关闭

Pall Filtration System Rescues Bottled Spring Water Producer from Closure

Pall Aria™ System Rescues Bottled Spring Water Producer from Plant Closure

Overview

 

Spring water is a valuable natural resource, which requires good purification treatment before appearing on grocery store shelves as high purity, visually pleasing bottled product. Filtration is a key process step required to achieve consistently high product quality. The costs associated with filtration may be substantial, depending on source water quality. Disposable filters are a technically sound solution but their use may become economically unsustainable in the face of difficult or variable quality source water. When operational costs related to disposable filter spend, process downtime, and labor expenditures become too high, a backwashable water purification system boasting substantially lower cost of ownership for water treatment becomes very attractive. The Pall Aria FB system for the food and beverage industry is an exceptional solution for providing high purity water, and it has been implemented across the globe to reduce water filtration costs and achieve brand protection.

 

The Challenge

A bottled water company markets a variety of consumer water products, including spring water. They have procured the spring water for many years from a third party supplier, who draws it from an aquifer and transports it by tanker truck to them1. The spring water producer’s business depends to a great extent on continued relationship and supply to the bottled water company, their main customer. Once received at the bottled water plant, the spring water requires purification treatment, including extensive filtration.

 

As bottled water quality requirements had continually risen over the years in a very competitive environment, the bottled water company found that their filtration spend had grown to unsustainable levels. In addition, variable incoming spring water quality resulted in frequent filter blocking and high cleaning costs, frequent filter change-out, substantial water costs associated with backwashing the activated carbon bed, and related labor expenditure, process downtime, and operational inefficiency. A yearly disposable filter spend of US $2.16 / m3 (US $0.82 / 100 US gal) of bottled spring water was not uncommon, and this figure did not include all the additional process-related costs. The economics of the situation were so difficult that there was a real risk of plant closure with shift of operations to other sister plants, which would also have directly impacted the viability of the spring water supplier. 

 

The Solution

A Pall Aria FB-4 system provided the win-win solution for the problem. The spring water supplier, who had instituted only minimal water filtration previously, saw an opportunity to provide added value to its customers by improving the water quality at the spring water source. They rented the Pall system for a trial. In an overwhelmingly positive outcome, the water filtrate quality was so markedly improved that a purchase decision was made one month into the trial. To enable a speedy implementation of the improved solution, the rental unit was left in place until a new system was delivered. Pall Advanced Separations Systems (PASS) Applications Support assisted with rental system Application Bulletin Pall Aria FB-4 Water Filtration System set up and installation, operator training, and final system commissioning. Over the course of the rental period, guidance was provided to ensure proper operation and an understanding of system capability based on the application.

 

The Pall Aria FB unit is an automated, backwashable system designed to meet the stringent water requirements of the food and beverage industry. At the heart of the system are robust PVDF (polyvinylidene fluoride) hollow fiber microfiltration (MF) membranes. The unique advantage of these membranes is their homogenous construction, which means their entire thickness has the same porosity and permeability, thus ensuring consistent removal performance. These 0.1 micron membranes provide excellent particulate, organic material (colloids) and other contaminant removal, regardless of feed water quality and turbidity spikes (within specified limits covering the most typical water treatment applications).

 

The system provides water quality far superior to conventional treatment, with typical filtrate values at < 0.1 NTU turbidity, total suspended solids (TSS) at 0.1 mg/liter, and silt density index (SDI, a predictor for colloidal fouling) at < 3. A gross failure test can be performed on a daily basis to ensure consistent and reliable filtration performance of the membranes.

 

Water and its soluble components pass through the membranes as filtrate, in an “out to in” flow configuration. Retained solids are excluded and concentrated on the membrane surface during direct (“dead-end”) filtration, and are discharged from the system in a low volume waste stream. High microbiological safety is additionally achieved due to the system’s hygienic, stainless steel design with automatic disinfection when the system is out of operation for more than 24 hours. High system recovery (water yield) of 95-98% is made possible by application of a unique threestep approach on this fully automated system:

 

  • periodic and automated air scrubbing and reverse flow mechanical backwash (AS/RF), programmed for 2-3 minutes in between 45 minute filtration cycles
  • short enhanced flux maintenance (EFM) process, with caustic, acid, and sanitization, carried out every 7 days
  • CIP regime, with caustic, acid, and sanitization, applied every month. This approach ensures constant flux during operation and long membrane life typically over three years.

 

 

Many end users have reported problem-free membrane life of 5-10 years, depending on proper system operation and maintenance. During the life of the membranes the only consumable costs are energy costs linked to providing power to the pump on the system and compressed air for air scrubbing, and chemical costs for cleaning and sanitizing the equipment. Both consumables are minimal expenses. The spring water producer’s total energy and cleaning chemical costs, plus the expected cost of membrane replacement in this application are estimated at US $0.03 / m3 (US $0.01 / 100 US gal)2. The Pall Aria FB-4 system at the spring water producer now supplies up to 22.7 m3 / hour (100 US gal /min) of consistent and high quality water from the source for end users3. With a system footprint of approximately 22 m2 (237 ft2) the system is compact and stand alone. It includes 4 filtration modules, a control panel, prefilter strainer, pump, pipework, valves, flow, pressure and temperature transmitters, and a CIP station. Each hollow fiber module features 50 m2 (538 ft2) of filtration area for a total of 200 m2 (2152 ft2). In this application, there had been no significant water treatment previously carried out at the spring water source.

 

In other applications where conventional water treatment approaches are in use, such as sand and multi-media filters, Pall Aria systems provide superior filtrate quality and have proven themselves to be cost-effective, with typical payback achieved at approximately 1-2.5 years, depending on size and type. Table 1 provides an overview comparison. The immediate result at the spring water producer’s main customer, the bottled water plant, was a substantial process improvement and filtration cost reduction, as the incoming water to their plant is now of higher and more consistent quality.

 

The plant’s disposable filter spend was reduced by half. In addition, while the carbon bed had previously required backwashing 4 times per week, with a water usage of 34 – 38 m3 (9,000-10,000 US gal) per backwash, the backwash frequency has been reduced to only once every 2 weeks, resulting in a water use reduction of 87.5% or $54,600/year of water cost savings related to this operation. Finally, overall cost savings including labor, cleaning chemicals, and related operations have shifted the economic equation to enable the plant to continue operations. In effect, the value gained by the bottled water plant due to the installation of the Pall Aria FB-4 system at the spring water supplier represented a system cost offset within less than 1.5 years.

 


The Benefits

The Pall Aria FB-4 system has made it possible for both the spring water producer and the bottled water plant to maintain and continue operations into the future.

 

The spring water producer experiences these benefits:

  • New value-add for its customers due to production of consistent and high quality spring water, largely irrespective of source water variability or turbidity spikes
  • Low operating costs (energy, cleaning chemical consumption) of the Pall Aria system • Efficient operation with high process uptimes • Simple and easy operation due to full system automation, ensuring consistent and reliable flux, predictable performance, minimal maintenance and negligible manpower cost
  • Confirmation of filtration performance with simple gross failure test
  • Easy and space-savings installation due to compact 22 m2 (237 ft2) Pall Aria system footprint

 

The bottled water plant experiences these benefits:

  • Operational economics much improved, with disposable filter spend cut in half, and substantial water, cleaning chemical and labor cost savings realized
  • Positive environmental impact due to water usage reduction of 87.5% on carbon bed cleaning
  • Profitability has risen such that the plant can continue its operations and maintain its current employment

 

In hundreds of additional applications at food and beverage plants around the globe, Pall Aria systems are used to purify varied types of incoming source water (spring, surface, well, municipal), enable in-process water recycling, and provide direct filtration of bottled water, blending water or base water in food and beverage production. These systems are exceptional due to reduced risk of product contamination and associated losses, low cost of ownership for water treatment, and minimal operator intervention requirements.

 


Footnotes

  1. Regulations in different geographies vary with regard to methods used for bottled spring water sourcing, transport, and production. The steps shown in the process flow diagram represent one manufacturer’s approach to water treatment.
  2. Based on energy cost of $0.11/kWh
  3. Capacity varies based on raw water quality.
  4. Figure is based on monthly CIP. Daily EFM, usually only in secondary effluent treatment applications would require additional 0.1 kWh/ m3 (0.038 kWh/ 100 US gal).
  5. Figure is based on Pall Aria FB treatment of raw water from typical sources, energy cost of $0.11/kWh and typical membrane life, based on application.

 


About Pall Corporation

Pall Corporation is a global filtration, separation and purification leader providing solutions to meet the critical fluid management needs of customers across the broad spectrum of life sciences and industry. We work with our customers to advance health, safety and environmentally responsible technologies. Pall Food and Beverage provides products and services to ensure product quality and maintain process reliability in beverage and food production. Our solutions also assist in consumer protection, waste minimization and reduction of operating costs.

TFF技术增加产量并减少废物流

发酵和熟化后在罐底部收集的剩余酵母中含有高达80%的提取物,这些提取物现在可以回收利用,而不用再丢弃处理。可以从中回收啤酒并以5%的比例重新混合到酿造工艺中,而不会对啤酒质量产生不利影响,从而提高产量并减少需要生产的总啤酒量。这不但减少了二氧化碳排放量和用水量,降低了生产成本,而且最大程度地减少了废物流,降低了处理成本,减少排放回环境中的BOD和COD。
发酵和熟化后在罐底部收集的剩余酵母中含有高达80%的提取物,这些提取物现在可以回收利用,而不用再丢弃处理。可以从中回收啤酒并以5%的比例重新混合到酿造工艺中,而不会对啤酒质量产生不利影响,从而提高产量并减少需要生产的总啤酒量。这不但减少了二氧化碳排放量和用水量,降低了生产成本,而且最大程度地减少了废物流,降低了处理成本,减少排放回环境中的BOD和COD。
了解更多

精酿啤酒厂维护形象,减少损失

虽然由于低pH、乙醇浓度和低氧含量,啤酒对细菌生长有一定的抑制作用,但某些啤酒腐败细菌(包括乳杆菌、片球菌、梳状菌和巨型球菌)可能导致异味、混浊和发酸。这些质量缺陷使得产品不可接受,经常导致大量经济损失和负面品牌形象。在整个生产过程中,必须防止有害微生物污染,才能实现所需的最终啤酒质量。这种污染可能来自于配料成分(包括酵母)、与产品接触的空气和水体以及环境。
虽然由于低pH、乙醇浓度和低氧含量,啤酒对细菌生长有一定的抑制作用,但某些啤酒腐败细菌(包括乳杆菌、片球菌、梳状菌和巨型球菌)可能导致异味、混浊和发酸。这些质量缺陷使得产品不可接受,经常导致大量经济损失和负面品牌形象。在整个生产过程中,必须防止有害微生物污染,才能实现所需的最终啤酒质量。这种污染可能来自于配料成分(包括酵母)、与产品接触的空气和水体以及环境。
了解更多

颇尔Aria™系统挽救濒临关闭的瓶装矿泉水生产厂商

矿泉水是一种有价值的自然资源,在以高纯水和外观鲜亮的瓶装产品形式出现在商店货架上以前,需要先进行良好净化处理。过滤是实现始终如一的卓越产品质量所必需的关键工艺步骤。根据水源质量的不同,过滤相关成本可能是关键所在。一次性过滤器是一种技术可靠的解决方案,但在高品质水源难以获取或变化的情况下,使用这种过滤器在经济上不可持续。
矿泉水是一种有价值的自然资源,在以高纯水和外观鲜亮的瓶装产品形式出现在商店货架上以前,需要先进行良好净化处理。过滤是实现始终如一的卓越产品质量所必需的关键工艺步骤。根据水源质量的不同,过滤相关成本可能是关键所在。一次性过滤器是一种技术可靠的解决方案,但在高品质水源难以获取或变化的情况下,使用这种过滤器在经济上不可持续。
了解更多

微流系统用于干酪盐水净化,10个月即可回收成本

浸入盐水进行盐渍的加工方法广泛用于世界各地的多种奶酪。在反复浸泡期间,奶酪中的脂肪、凝乳颗粒和微生物,加上蛋白质和其他组分的积累,为耐盐性微生物建立起了营养丰富的环境。另外,重复使用的盐水会成为有害微生物的储存池,例如产生气体或颜料的细菌、酵母菌和霉菌或耐盐病原体,这些微生物会交叉污染奶酪和影响产品质量。为了确保日常生产的稳定性,盐水和盐水浸渍操作的良好控制非常关键。除此之外,盐水处理正在受到越来越多的关注。特定领域的高处理成本或体积限制正在推动进一步回收利用盐水的需求,以节省运行成本,尽可能减少工厂的环境足迹。
浸入盐水进行盐渍的加工方法广泛用于世界各地的多种奶酪。在反复浸泡期间,奶酪中的脂肪、凝乳颗粒和微生物,加上蛋白质和其他组分的积累,为耐盐性微生物建立起了营养丰富的环境。另外,重复使用的盐水会成为有害微生物的储存池,例如产生气体或颜料的细菌、酵母菌和霉菌或耐盐病原体,这些微生物会交叉污染奶酪和影响产品质量。为了确保日常生产的稳定性,盐水和盐水浸渍操作的良好控制非常关键。除此之外,盐水处理正在受到越来越多的关注。特定领域的高处理成本或体积限制正在推动进一步回收利用盐水的需求,以节省运行成本,尽可能减少工厂的环境足迹。
了解更多

蒸馏酿酒厂通过SUPRApak™技术在降低运营成本的同时提高产品质量

烈性酒过滤可能是一项难度极高的工作。不但需要清除可能引起浊度的污染物,同时还要保持产品中提高质量的组分。过滤板是实现这一微妙平衡的传统方法。过滤片采用了同时具备优良吸附能力和深度过滤能力的独特材料基质,使其成为降低烈性酒浊度和消除浑浊现象的理想解决方案。过滤片有多个等级,覆盖广泛的应用范围,从浸果酒过滤到去除褐色烈性酒的冷藏浑浊物,再到白色烈性酒活性炭处理。另外,许多板式和板框式过滤器还可灵活地添加或移除过滤片,以适应批量大小、流量或要过滤的特定产品。
烈性酒过滤可能是一项难度极高的工作。不但需要清除可能引起浊度的污染物,同时还要保持产品中提高质量的组分。过滤板是实现这一微妙平衡的传统方法。过滤片采用了同时具备优良吸附能力和深度过滤能力的独特材料基质,使其成为降低烈性酒浊度和消除浑浊现象的理想解决方案。过滤片有多个等级,覆盖广泛的应用范围,从浸果酒过滤到去除褐色烈性酒的冷藏浑浊物,再到白色烈性酒活性炭处理。另外,许多板式和板框式过滤器还可灵活地添加或移除过滤片,以适应批量大小、流量或要过滤的特定产品。
了解更多

用于食品和饲料配料成分生产的发酵液澄清系统

氨基酸、有机酸和维生素等散装食品和饲料配料成分的生产商均采用发酵作为其生产的基础。当今的现代工业生物技术工艺使用精心选择和纯化的微生物细胞培养液来生产更多的各种配料成分并提高生产率。在发酵过程中,微生物在工业生物反应器中繁殖,利用碳水化合物获取能量。微生物在充分控制的通气条件、搅拌速度、温度、pH值等参数条件下生长。。发酵过程可以持续几小时到几天。由微生物产生的代谢终产物是目前使用的许多配料成分的基础。
氨基酸、有机酸和维生素等散装食品和饲料配料成分的生产商均采用发酵作为其生产的基础。当今的现代工业生物技术工艺使用精心选择和纯化的微生物细胞培养液来生产更多的各种配料成分并提高生产率。在发酵过程中,微生物在工业生物反应器中繁殖,利用碳水化合物获取能量。微生物在充分控制的通气条件、搅拌速度、温度、pH值等参数条件下生长。。发酵过程可以持续几小时到几天。由微生物产生的代谢终产物是目前使用的许多配料成分的基础。
了解更多

苹果酒生产商使用OENOFLOW™ HS系统最大限度地提高产量,增加产能

在先进的苹果酒生产过程中,为了能提供外观亮泽且耐储存的产品,过滤操作是关键。根据传统工艺,苹果酒澄清过程基于硅藻土或过滤片的过滤技术。但是,基于更好的经济性、更简便的操作以及更低的废料量,颇尔的Oenoflow™ XL类型的交叉流过滤系统在过去十年中已经被广泛采用。
在先进的苹果酒生产过程中,为了能提供外观亮泽且耐储存的产品,过滤操作是关键。根据传统工艺,苹果酒澄清过程基于硅藻土或过滤片的过滤技术。但是,基于更好的经济性、更简便的操作以及更低的废料量,颇尔的Oenoflow™ XL类型的交叉流过滤系统在过去十年中已经被广泛采用。
了解更多

TAB过滤可显著提高即饮茶水饮料的质量和产量

茶饮料、果汁和饮料、碳酸软饮料和其它饮料都会因出现耐热嗜酸菌孢子(TAB)而导致腐败。嗜热孢子可能来自于接触果汁生产过程中的农业原材料或天然提取物中的甜味剂、果汁和茶浓缩液或加味料、香精和色素等饮料成分的污染。
茶饮料、果汁和饮料、碳酸软饮料和其它饮料都会因出现耐热嗜酸菌孢子(TAB)而导致腐败。嗜热孢子可能来自于接触果汁生产过程中的农业原材料或天然提取物中的甜味剂、果汁和茶浓缩液或加味料、香精和色素等饮料成分的污染。
了解更多

丰富交叉流酒泥过滤经验为御兰堡创造可观的效益和收益

从酒泥中回收葡萄酒是葡萄酒厂所面临的难度最大的过滤需求。悬浮固体的高浓度和可变性对合适的过滤技术造成了限制,同时严格的环境规定和可持续性方案也对减少浪费量产生了压力。残渣通常使用基于助滤剂的系统过滤,例如转筒真空(RVD)或箱式压滤机。虽然这些系统通常具有从固体回收葡萄酒的良好体积回收率,但是存在可能影响葡萄酒质量的一些内在缺点。开放式设计导致可能接触氧气,使得回收的葡萄酒经常需要进一步处理。通常评级较低,用于混合酒而不是添加回原浆批次。
从酒泥中回收葡萄酒是葡萄酒厂所面临的难度最大的过滤需求。悬浮固体的高浓度和可变性对合适的过滤技术造成了限制,同时严格的环境规定和可持续性方案也对减少浪费量产生了压力。残渣通常使用基于助滤剂的系统过滤,例如转筒真空(RVD)或箱式压滤机。虽然这些系统通常具有从固体回收葡萄酒的良好体积回收率,但是存在可能影响葡萄酒质量的一些内在缺点。开放式设计导致可能接触氧气,使得回收的葡萄酒经常需要进一步处理。通常评级较低,用于混合酒而不是添加回原浆批次。
了解更多